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HAES, a three-dimensional shock and material response code
which is based on smoothed particle hydrodynamics (SPH) is
described. Calculations are presented and compared with experimental
results. The SPH method is unique in that it employs no spatial mesh.
The absence of a grid leads to some nice features such as the ability to
handle large distortions in a pure Lagrangian frame and a natural treat-
ment of voids. Both of these features are important in the tracking of
debris clouds produced by hypervelocity impact—a difficult problem
for which SPH seems ideally suited. We believe this is the first applica-
tion of SPH to the dynamics of elastic-plastic solids. © 1993 Academic
Press, Inc.

INTRODUCTION

Traditionally, Lagrangian codes have been used to
simulate material response when the amount of deformation
is small. When the deformation is large, Eulerian calcula-
tions have been employed. The Lagrangian calculation is
more accurate—the Eulerian calculation has greater
applicability. These strengths and weaknesses are due to the
convective derivative which is absent in the equations
written in the moving Lagrangian frame. Numerical
treatment of this advection term is difficult and introduces

inaccuracies into the calculation. However, if the errors can
be made small, the Eulenan calculation can be used to treat
a variety of high strain phenomena.

Various methods have been devised in order to achieve
the best features of both approaches. Such “hybrid” techni-
ques normally use two grids, one Lagrangian—the other
Eulerian, with information exchanged between them. These
mappings add a good deal of complexity to the calculation
and can also introduce inaccuracies. Nevertheless, many
hybrid techniques have been successful and are widely used
today.

Unique in computational fluid dynamics is smoothed
particle hydrodynamics (SPH). The SPH technique uses no
underlying grid—it is a pure Lagrangian particle method
developed by Lucy [1], Gingeld [2, 3], Monaghan [4-6],
and Benz [7]. The absence of a mesh and the calculation of
interactions among particles based on their separation
alone means that large deformations can be computed
without difficulty. Tt is for this reason that SPH has the
potential to be a valuable computational tool. Although
SPH has been proven excellent for astrophysical applica-
tions, it has not been applicd to problems requiring the
entire stress tensor, This paper addresses the extension of
SPH to such problems.
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THE METHOD

The foundation of SPH is interpolation theory. The con-
servation laws of continuum fluid dynamics, in the form of
partial differential equations, are transformed into integral
equations through the use of an interpolation function that
gives the “kernel! estimate” of the field variables at a point.
Computationally, information is known only at discrete
points, so that the integrals are evaluated as sums over
neighboring points. The reason that an underlying grid is
not needed is that functions are evaluated using their values
at the discrete points (particles) and an interpolation kernel.
An integration by parts then moves spatial derivatives from
operating on the physical quantities to operating on the
interpolation kernel which is analytic. These concepts will
now be described more fully. Consider a function f, a kernel
W which has a width measured by the parameter /, and the
following equation:

CFx)y = Wix=x',h) f(x) dx (1)

We find it useful to employ both tensor (superscripted) and
vector (bold) notation. For non-negative W with integral
normalized to unity, it follows that
(X)) 5 f(x). (2}
Relation (1) therefore may be considered to define the ker-
nel estimate ¢ £ of /. It is accurate to order #* Vf [7]. If
W is the Dirac delta function then we have the equality
¢ f> = f. Now suppose that f is known only at N discrete

points that are spatially distributed according to the
number density distribution

n(x}= i d(x — x;).

i=1

(3)
If we associate with particle j a volume

W,
dx'=—=, 4
* P(xj) @

thus introducing the concept of particle mass (#1), then an
approximation to (1) is

Jxp =y Wx—x (5)

N
s

i=1 P
This approximation to functions will ailow us to estimate
accelerations, strain rates, etc. in Euler’s equations (or the
Navier—Stokes equations) and forms the basis of SPH. For
a detailed discussion see Benz [7].

DERIVATION OF THE SPH EQUATIONS

The conservation equations of continuum mechanics are:

dp _ aus

dr- P X (6)
aus_ 10 ;
dr poxPf 7
dE o QU

P ®
dx*

= (9)

Dependent variables are the scalar density (p) and specific
internal energy (E), the velocity components U®, and the
stress tensor ¢*f. The independent variables are the spatial
coordinates x* and the time ¢ The total time derivative
(d/dt) is taken in the moving Lagrangian frame. Summation
over repeated Greek indices is implied. Let us now cast Eqs.
(6)-(8) into the SPH framework by applying the procedure
outlined above. Following Monaghan [8] we rewrite the
momentum and energy equations; then we find the kernel
estimate. The resuit is

B

JW%dx’=—J Wpf}xi’ﬁ

. ey
'[de; —J. 6x'ﬂ( )dx’

_J w ;ﬁ aa’?,, dx’

::_Ba U:
[e
ijl a :B
a?U* dp .,
+.[W'~p—2-a-xjﬁdx

dx’ (10)

(1)

—wdx

j‘ aE ax’

(12)

We now linearize these equations by taking integrals of
products equal to products of integrals (an approximation
accurate to order /2 times the product of the gradients of the
functions {7]) and drop the kernel estimates for quantities
that do not involve spatial derivatives to obtain

dp ou”
jWde p(x)jw—dx (13)
dU* o [o*
I'z —_ W__ r
jw ——dx J ax,ﬁ(p)dx
78 (x) op
_ P 14
pz(x) ‘[‘ Waxffi dx ( )
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JWCfi——fdx

gpli”
ax'?
a*f(x) U*(x)
T j

ax’

ﬁ&q

dp_ .,
W pdx. (13)

The remaining kernel estimates are now integrated by parts,
assuming W approaches zero fast enough that the surface
terms vanish:

jw%’;dxw jUﬁ—dx (16)
[ e~ ]
+ ‘;j ((:)) [ ot % dx’ (17)
[ W% dx’zif((:))j (x') U’(x’)%dx’
_ﬁ__“’ﬂ(sz)(ij)“(X}j (x’)%dx’. (18)

Finally, the integrals are evaluated by the particle method,
Eq. (5), to give

dpi_ mj B B
=P I UD Wy (19)

aus gt g

Lo Y QLRI y
dr - ?m"(pf + P,z) Wu.ﬂ (20)
dE;, o?*
—22 U Wi (21)
P

We have mtroduced the notation W, = W(x;—x;, &) and

oW joxt =
the term

W, . In obtaining (19) we subtracted from (13)

oW -
p UL GG PN =R UL Wy (22)
i J

B
ixt y

which is zero because the kernel vanishes at infinity. In this
way we introduce velocity differences into the density
calculation, which is desirable to maintain Galilean
invariance and to be consistent with the energy calculation
in {21). Velocity differences entered the energy equation
through the rewriting in (12). The rewriting in (11)
produced the symmetry between { and j in (20} which
ensures the satisfaction of Newton’s third law. Equations
{19)—(21) are the conservation laws of continuum dynamics
written in the SPH framework. A given particle / has a den-
sity determined by (19), an acceleration obtained from (20),
and an internal energy change given by (21). The summa-

tions are over neighboring j particles. These equations are
not unique, Several other forms of particle equations can be
derived using various mathematical manipulations. Some of
these are discussed by Monaghan [97.

THE DENSITY CALCULATION

It is important to recognize that (19) is not the density
calculation that normally appears in the SPH literature. It
is more in the spirit of SPH to compute the density using the
equation obtained by substituting p for fin (5), namely,

=Y m W,

J

(23)

With this equation only particle coordinates and masses
are required to compute the density, and the continuity
equation {6} is automatically satisfied. The disadvantage of
using (23) is edge effects—particles near a free surface
appear underdense and therefore in tension, causing
motion. Benz [ 7] discusses several possible solutions to this
problem including spacing modification, ghost particles,
initial relaxation, and the use of {19). Note that using the
chain rule on (23) and subtracting (22) leads to

dp;

o ) Wi (24)

R
Dl

)

which differs from (19) only in that p; appears in the
denominator rather than p,. We have not yet explored the
consequences of using (24} in place of (19). The difference is
of the same order as the difference between the product of
the expected values and the expected value of the product.

ARTIFICIAL VISCOSITY AND WALL HEATING

As they stand, Egs. (19)}-(21) yield large unphysical
oscillations near shocks. In fact, many numerical solutions
of the continuum equations will exhibit this behavior
because the dissipative terms have been omitted. Variations
of physical quantities across shocks in nature are far
too sharp to be captured by numerical techniques.
Von Neumann and Richtmyer [10] invented “artificial
viscosity” which acts to smooth shocks over a few resolution
lengths and to stabilize numerical solutions. The additional
term is introduced into the equations as an artificial viscous
pressure I7. We follow Monaghan and Gingold [4] who
derived the artiftcial viscous pressure for SPH,

—AC i+ ﬁ#i
. — py

i

ir (U,-Uy)-{x,—x;)<0 (25)

0 otherwise,
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where
h{Ui_Uj)'(xi_xj}
= 26
v (x;—x,)* + eh? (26)
and
cy={c;+¢;)/2, py=(p;+p;)/2. (27)

The parameters « and f§ appearing in (25) are of order unity
['11,12] and ¢ in (26) is usvally taken as 0.1 [11}. The
linear term in {25) uses the sound speed c¢. This artificial
viscosity gives satisfactory results in most cases, but under
some severe conditions it fails to remove spurious heating,
An example of this is when a stream of gas is brought to
rest against a rigid wall. Noh [13] was able to improve
numerical solutions in such cases dramatically by adding
an artificial heat conduction term to the energy equation.
Monaghan [14] derived the SPH analog of Noh’s “wall
heating” term in which the net artificial heat flux at particle
i is given by

{; E,—E

H=2) 2 ——x, VW, (28)
PPy Xy
where
L=+ 02, xy=x—x, (29)
and
{=ghc+ g, F(IV- U - V.U). (30)

The two parameters appearing in (30) are of order unity
[14]. The particle equations with the artificial viscosity and
artificial heat conduction terms inctuded are

m.

@ PLS UI-UD Wy, (31)

i P

av: of gf

ar =—Zm,(?+?+ﬂ,-j) Wi (32)

i i P

dE; . . e 1

E,—,ij(Uj—U})(p—?-i-EHy)Wwﬁ-Hj. (33)
4 i

CONSTITUTIVE RELATIONS

The stress tensor appearing in Egs. (32) and (33) is
defined in terms of an isotropic part which is the pressure
(P) and the traceless symmetric deviatoric stress (S):

cf=p§F—S (34)

The pressure is normally computed using an equation of
state having functional form P= P(p, E). such as the
Mie-Gruneisen equation for solids or gamima-law for gases:

Mie—Gruneisen, P(p, EY={1—4In) Py(p)+IpE (35)
{ao’?"'bo’?z"'co’?j, n>0,
PH=
agh, n<0;
(36)
Ideal Gas, P={(y—1)pE 37)

The subscript “H” refers to the Hugeniot curve, while
= p/p,—11s used to represent the compression and [ is
the Gruneisen parameter. The constants ag, #,, and ¢, in
(36} can be related to the parameters C and S in the linear
shock velocity—particle velocity relation Ug=C+SU,
through a Taylor’s expansion of the Hugoniot curve
Py =Cn(1 +9)/{1 —n(S—1)]*

'ﬂfo=[5'0C2 (38)
bo=ay[1+2(S—1})] (39)
co=u[AS—1}+3(5-1)7]. (40)

For the anisotropic part of (34} we write a prognostic equa-
tion for the deviatoric stress, assuming small displacements

82 = ug™f = p(8*F — L 5*Pg), (41)

where p is the shear modulus and £ is the traceless rate of
strain. However, for finite displacements this equation is not
material frame indifferent [15]; that is, the material
response will depend in an unphysical way on rotations
(and possibly transiations) of the material and of the
observer describing it. A variety of frame-indifferent stress
rates have been formulated. Herrmann [167] examines the
relative merits of several of these. The Jaumann rate is the
most widely used in codes and we adopt it also. With
the Jaumann rate, our constitutive equation is

S _ g R _ SR — yif (42}
The strain rate and rotation rate tensors that have been
used are defined as

m-*- ox”*

e (220
(2

w1 f0U* U’
£ == -—
2 2

(43)
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Particle equations for (43) are obtained by Libersky and
Petschek [17] in a manner similar to that of (19, 20, 21)

ds*#
dr

xy S 5 H my x *
-smit- stk =532 wi- vy w,,

PR
1
+(UI-UY Wff.ﬂ—ngfS’B]
(44)

The divergence is already determined by (19), D,=p,/p,,
and the rotation rate is

. i
R?"=2j QUG —UN W, = (U U W] (45)

A

The plastic flow regime is determined by the von Mieses
criterion when the second stress invariant J2= S§*§*
exceeds the known flow stress ( ¥). The individual deviators
are then brought back to the flow surface,

S =5 /¥, /3T

A more accurate treatment for most metals, not yet
implemented in our code, is obtained by computing a
history-sensitive flow stress, rather than a predetermined
fixed value as described above. The Johnson—-Cook model
[18], for example, takes mto account thermal softening,
strain hardening, and strain rate effects on the equivalent
flow stress. This more sophisticated model contains
seven strength-related parameters. The elastic-perfectly
plastic constitutive model described above contains two
parameters, the shear modulus (g) and the plastic yield
stress (Yo )

(46)

THE KERNEL

The interpolation kernel or smoothing function most
widely used in three-dimensional SPH is the B-spline,

BGvi+h?) O<v<l
Wiv, =4 S(2—v) l<v<?2 (47)
0 otherwise.

In Eq. (47) v=|x;—x|/h, while the fractional coefficients
assure proper normalization and continuity. This kernel
interpolates to second order in # and is always non-negative,
The kernel also has compact support; that is, it goes to zero
at a distance 24 from its peak. This provides a clear limit on
the number of neighbor particles. Higher order interpola-
tion kernels exist [3, 7] but are not always positive definite.

It is important to note that the smoothing length A in (47)
need not be constant but can be a function of space

and time. Variable smoothing length is the SPH analog to
adaptive gridding in mesh-based codes allowing greater
resolution in regions where it is needed. Some calculations
are difficult to perform with SPH unless a variable
smoothing length is used. For example, in expanding
particie clouds, such as would be produced by explosions
and hypervelocity impact of thin plates, A must increase in
order to maintain adequate resclution. When the use of
variable & is appropriate we use the method discussed by
Benz [ 7] in which the smoothing length changes according
to the rate equation /i/h = 1 V. V. Bicknell [19] shows that
h=h(r) conserves the momentum but /i = h(x) does not.
The error introduced by the spatial dependence does not
appear to be significant.

TIME INTEGRATION

Equations (31)}-(33), (44) are integrated using a standard
leap-frog algorithm [11] with the time step calculated from
the configuration at time ¢ to advance the field variables
to 1+ ér. We will switch from superscript tensor indices to
subscripts here in order to accommodate the standard
superscript representation of the time stepping in which »
indicates the current time ¢ and # + 1 indicates the advanced
time ¢ + &t

p"* L= p"(1 — D &1) (48)
Unri2=pgr='2 4 361"+ 6" O F (49)
E" = E"4 81°G (50
Strl=Sy+orH b
XTHL = R (52)

In these equations D, F, 7, and H represent the volumetric
strain, total acceleration, work per unit mass, and stress rate
on a particle as determined by the interactions with
neighbor particies. The accuracy of the leap-frog scheme is
second order in time and its stability is guaranteed by using
the Courant—Friedrichs-Lewy condition to determine the
size of the time step 1. We find the minimum over all par-
ticles of whi/(c+ s), where ¢ is the adiabatic sound speed, s
is the particle speed, / is the smoothing length, and w is a
constant factor. Choosing @ = 0.3 seems adequate.

FINDING NEIGHBORS

The N7 interactions that resvit from direct application of
the SPH formalism without consideration of the finite range
of the smoothing function can be reduced to ~Nlog N
through use of a “linked-list” [20]. The linked list algo-
rithms perform three basic functions in our code: spatial
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sorting, construction of particle interaction lists and ghost
particle generation. Ghost particles are fictitious particles
used to impose boundary conditions. All sorting activities
are facilitated by means of an identifying particle number
assigned when the particles are generated.

Spatial sorting is accomplished by embedding a uniform
grid within the computational domain and assigning par-
ticles to the grid boxes. The sides of each box have length
equal to the range of the smoothing function. Possible
neighbors for a particie are those occupying the same box
and the neighboring boxes. Thus, only nine boxes need be
considered in 2D and 27 in 3D. Both real and ghost boxes
(fictitious cells adjacent to the computational domain) are
generated, Ghost boxes contain ghost particles formed by
reflections at the computational boundary.

CALCULATIONS
The Noh Problem

The uniform implosion of an ideal gas was conceived by
Noh [13] as a stringent test problem for shock codes.
Initially, the gas is moving radially inward at unit speed,
unit density, and zero internal energy. For y = 3 and spheri-
cal symmetry, Noh found the analytic solution to be a shock
moving radially outward at speed i. The gas behind the
shock has particle speed 0, specific internal energy 4, and
density 64. The value of 64 is due to a 16-foild increase from
adiabatic compression and a four-fold increase across a
strong shock. Our calculation used one-gighth of a sphere
in three-dimensional Cartesian coordinates and three

exuct solutlon
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(a) Density profile at r = 60 for the spherical Noh imploston problem as computed with 3D Cartesian SPH, using a smoothing length of two.

The exact solution is also plotted. (b) Density profiles at ¢ = 60 for the cylindrical Noh implesion problem as computed with 2D Cartesian SPH. Results
of two calculations, corresponding to different values of the smoothing length and the exact solution are shown.
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reflecting planes. Particles were placed within this domain
in a regular cubic array and then randomly perturbed with
maximum excursion of /8. The initial radius of the particle
cloud was 90. The smoothing length was set to 2 with 1.5
particles per A in each coordinate direction giving 187,688
particles, including ghost particles. Each particle was given
unit density, unit speed inward, and zero internal energy.
Results of the SPH calculation are shown in Fig. 1a, where
the density is plotted as a function of radius for each particle
at time 60. Note that all SPH particles fali on one curve,
showing that symmetry is achieved in the calculation. This
is the result to be expected as there is no spatial mesh which
can bias the solution along gridlines. The calculation took
130 h to run on a 15 Mflop worstation. This is a relatively
long time, we suspect, compared to other methods. The
reason for the slowness i3 the implosion nature of the
problem, coupled with our use of a constant smoothing
length. As the gas continues to move radially inward, the
calculational time increases dramatically as the number of
interacting neighbors for each particle increases by a factor
of 64 because the particles are piling up near the origin but
the smoothing length remains fixed. An SPH calculation
with a variable smoothing length would prove much more
efficient for this problem. For explosions and rarefactions
the variable smoothing length is often required in order to
maintain resolution in an expanding particle cloud. We also
present results of the “cylindrical” Noh probiem in Fig. 1b,
In this geometry the gas behind the shock should have par-
ticle speed 0, specific internal energy 3, and density 16. Two
runs were performed using different values (1.0, 2.0) for the

oy SxLlEl L
2.6 @a g
2.4} ]
2.2} ]
2.0 )
1.8}
1.6}
1.4}
1.2}
1.0}

---------

—T—

TABLE1]

Properties of Materials Used in the Calculations

polefec)  Clem/psy 5 pu(Mb)  FYo{Kb) I
Copper 293 0.39 1.50 .46 450 100
Aluminum 271 0.53 1.50 025 5.50 1.70
Iron 7.89 0.36 1.80 0.80 5.00 1.81

smoothing length and two particles per k. One reflecting
plane and a hali-circle of particles were employed. The low
resolution calculation used 15,482 particles and the higher
resolution, 60,000. The run times were 4.7 and 23 h, respec-
tively, on a 15 Mflop workstation. Results of all these “Noh”
problems are given in Fig. 1.

Cylinder Impact Test

Numerical simulation of the deformation of a metal cylin-
der resulting from normal impact against a flat, rigid surface
is often used to test constitutive models in codes. There is
ample experimental data and the tests are simple yet
stringent. We have modeled an ARMCQO iron cylinder with
speed 221 m/s, impacting a perfectly reflecting surface using
SPH, One-quarter of the cylinder and two reflecting planes
were used. A third reflecting plane represented a perfectly
rigid boundary. The initial length of the iron rod was L=
2.54 ¢m and the initial diameter was D,=0.76 cm. The
smoothing length was chosen to be #=0.038 cm with one
particle-per-# in each coordinate direction. A total of 6097

FIG. 2. Cylinder impact test with ARMCO iron at 221 m/s: (a) Calculation (dots) and experiment (shaded area). {b) 3D rendering of the SPH

calculated cylinder.
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particles were used in the simulation. Material properties
used are given in Table I. Figure 2a shows the final shape of
the computed cylinder (dots)} and the actual cylinder
(shaded area). The experimental data were obtained from
[21]. Figure 2b is a three-dimensional rendering of the SPH
computed cylinder. Reasonable agreement with experiment

4 "w.-..t' v -‘I"','}:'\m "
T ..

e

g

By
8

is observed. We have not investigated the sensitivity of the
calculation to the artificial viscosity parameters (x=2.5,
B=25) or the artificial heat conduction parameters
(g, =05, g;=10). The calculation was run to 60 us at
which time all motions were negligible. The calculation took
1980 cycles and 6 h on a 15 Mflop workstation.

FIG. 3. Debris cloud produced by the impact of a copper pellet on an aluminum bumper plate: (a) SPH calculation viewed from above the plate.
(b) SPH calculation viewed from below the plate. (¢} SPH calculation. Copper projectile particles only. (d) Experimental X-ray photograph [20 ).
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Hypervelocity Impact

Figure 3 shows the debris cloud resuiting from the nearly
normal impact of a 3-g copper disk {11.18-mm diameter x
3.45-mm thick ) on a 2.87-mm thick aluminum bumber plate
at 5.55 km/s. Figure 3d is a radiograph of the actual cloud
at 6.40 us after impact with a 54° yaw, courtesy of A. I.
Piekutowski [227. The SPH-computed debris clouds for
normal impact are shown from views above Fig. 3a and
below Fig. 3b the plate. Both aluminum plate particles and
copper projectile particles are displayed in 3a but the copper
particles are mostly hidden inside the cloud of aluminum. In
3b a wedge of particles has been removed from the plot so
that the interior of the cloud and both materials can be seen.
We have displayed only copper particles in Fig. 3¢. The two
materials are easily distinguished in the X-ray photograph
(Fig. 3d). The SPH result compares favorably with the
experiment in that the maximum width and length of
the debris clouds agree. This result s to be compared with
the two-dimensional axi-symmetric calculation presented
in the companion paper “Cylindrical Smoothed Particle
Hydrodynamics” appearing in this volume. The greater
resolution permitted by the 2D calculation allowed the code
to capture fine details of the experiment with remarkable
sharpness. Some of these features such as the “kink” in the
cloud at the aluminum—copper interface is missing in the 3D
simulation. Material properties used in the calculation are
given in Table I. We took A#=0.72mm in the plate and
A =10.86 mm in the projectile with 1.5 particles per 4 in both,
giving a total of 30,583 particles. Only one quadrant of the
problem was computed as we employed two refiecting
planes. The calculation took 260 cycles and 10h on a
15 Mflop workstation.

DISCUSSION

The three-dimensional SPH code .#.«/%.# has been
described and three calculations presented. The calculated
density for the Noh problem (p = 38) falls well short of the
analytic solution (p = 64) due to the coarse resolution used.
However, the solution is well behaved, perfect symmetry is
maintained, and we expect to see the solution improve with
use of finer resolution, Results for the cylinder impact
calculation agree reasonably well with experiment. The
hypervelocity impact calculation is in good agreement
with experiment, reproducing the distinctive shapes of the
deformed projectile and plate debris cloud. This 3D result
1s not as good as the 2D axisymmetric calculation presented
in the companion paper “Cylindrical Smoothed Particle
Hydrodynamics™ appearing in this volume. We are able to
use a2 much smaller smoothing length and more particles in
the 2D calculation and, therefore, capture fine details of the
debris cloud remarkably well. We have no reason to doubt
that the same accuracy could be achieved in the 3D calcula-

tion with equivalent resolution. Such a calculation is not
practical on today’s workstations,

We are encouraged by these results (and those of the
companion paper as well), but recognize the need for
improvement to the constitutive modeling and the viscosity.
Advantages of the method are its robustness, conceptual
simplicity, ease of adding new physics, a natural treatment
of void, and the ability to handle high strains in a pure
Lagrangian frame. Tracking of debris clouds resulting from
hypervelocity impacts is a particularly important advanage
of the method.
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